Package: BayesComm 0.1-2

BayesComm: Bayesian Community Ecology Analysis

Bayesian multivariate binary (probit) regression models for analysis of ecological communities.

Authors:Nick Golding and David J. Harris

BayesComm_0.1-2.tar.gz
BayesComm_0.1-2.zip(r-4.5)BayesComm_0.1-2.zip(r-4.4)BayesComm_0.1-2.zip(r-4.3)
BayesComm_0.1-2.tgz(r-4.4-x86_64)BayesComm_0.1-2.tgz(r-4.4-arm64)BayesComm_0.1-2.tgz(r-4.3-x86_64)BayesComm_0.1-2.tgz(r-4.3-arm64)
BayesComm_0.1-2.tar.gz(r-4.5-noble)BayesComm_0.1-2.tar.gz(r-4.4-noble)
BayesComm_0.1-2.tgz(r-4.4-emscripten)BayesComm_0.1-2.tgz(r-4.3-emscripten)
BayesComm.pdf |BayesComm.html
BayesComm/json (API)

# Install 'BayesComm' in R:
install.packages('BayesComm', repos = c('https://goldingn.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/goldingn/bayescomm/issues

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3

On CRAN:

openblascpp

4.35 score 9 stars 25 scripts 230 downloads 2 mentions 4 exports 17 dependencies

Last updated 9 years agofrom:6438bc0515. Checks:OK: 1 NOTE: 8. Indexed: yes.

TargetResultDate
Doc / VignettesOKDec 04 2024
R-4.5-win-x86_64NOTEDec 04 2024
R-4.5-linux-x86_64NOTEDec 04 2024
R-4.4-win-x86_64NOTEDec 04 2024
R-4.4-mac-x86_64NOTEDec 04 2024
R-4.4-mac-aarch64NOTEDec 04 2024
R-4.3-win-x86_64NOTEDec 04 2024
R-4.3-mac-x86_64NOTEDec 04 2024
R-4.3-mac-aarch64NOTEDec 04 2024

Exports:BCBCfitdevpartDIC

Dependencies:abindclicodacrayongluehmslatticelifecyclemvtnormpkgconfigprettyunitsprogressR6RcppRcppArmadillorlangvctrs