
Package: pop (via r-universe)
October 5, 2024

Type Package

Title A Flexible Syntax for Population Dynamic Modelling

Version 0.2

Date 2016-06-07

Author Nick Golding

Maintainer Nick Golding <nick.golding.research@gmail.com>

Description Population dynamic models underpin a range of analyses and
applications in ecology and epidemiology. The various
approaches for analysing population dynamics models (MPMs,
IPMs, ODEs, POMPs, PVA) each require the model to be defined in
a different way. This makes it difficult to combine different
modelling approaches and data types to solve a given problem.
'pop' aims to provide a flexible and easy to use common
interface for constructing population dynamic models and
enabling to them to be fitted and analysed in lots of different
ways.

License MIT + file LICENSE

Imports igraph, MASS

Suggests knitr, testthat

LazyData TRUE

RoxygenNote 5.0.1

Repository https://goldingn.r-universe.dev

RemoteUrl https://github.com/goldingn/pop

RemoteRef HEAD

RemoteSha b722cb0246ef2af61e49b8fa27e8a67c153385c6

Contents
as.transfun . 2
dispersal . 3
dynamic . 4

1

2 as.transfun

landscape . 6
parameters . 8
pop . 9
probability . 9
projection . 10
rate . 11
simulation . 12
transfun . 14
transition . 15

Index 17

as.transfun create a transition function

Description

A utility function to enable users to create bespoke transition functions (transfun objects) for use
in transitions.

Usage

as.transfun(fun, param, type = c("probability", "rate", "dispersal"))

Arguments

fun an R function describing the transition. This must take only one argument:
landscape and return a numeric vector (see details).

param a named list of the parameters of fun (see details).

type what type of transition this function represents, a probability or a rate

Details

fun must take only one argument, landscape, an object of class landscape. landscape objects
contain three elements which may be used in the function: population, a dataframe giving the
number of individuals of each stage (columns) in each patch (rows); area; a numeric vector giving
the area of each patch in square kilometres; and features, a dataframe containing miscellaneous
features (columns) of each habitat patch (rows), such as measures of patch quality or environmental
variables. See examples for an illustration of how to these objects. Parameters of the transfun should
be passed to as.transfun as a named list. These can then be used in fun by accessing them from
this list. Note that param isn’t an argument to fun, instead it’s modified directly in the function’s
envirnment (because reasons).

dispersal 3

Examples

a very simple (and unnecessary, see ?p) transfun
fun <- function(landscape) param$prob
prob <- as.transfun(fun, param = c(prob = 0.3), type = 'probability')

a density-dependent probability
dd_fun <- function (landscape) {

adult_density <- population(landscape, 'adult') / area(landscape)
param$p * exp(- adult_density/param$range)

}

dd_prob <- as.transfun(dd_fun,
param = list(p = 0.8,

range = 10),
type = 'probability')

dispersal dispersal transfun

Description

Create a transfun object representing a relative probability of dispersal between patches. Typically
used inside a call to transition

Usage

dispersal(value)

d(value)

is.dispersal(x)

Arguments

value the (positive) exponential rate of decay of dispersal probabilities. Large values
imply shorter range dispersal.

x an object to be tested as a dispersal transfun object

Details

d() is a shorthand for dispersal(). The transfun object returned, when applied to a landscape
object, produces a square symmetric matrix, with zero diagonal and off-diagonals giving the rel-
ative between patch dispersal probability. This implies that all individuals in the state will try to
disperse. The fraction remaining in the patch depends on value. To have only some fraction try to
disperse, a dispersal transfun can be multiplied by a probability transfun indicating the probability
of attempting dispersal.

The relative dispersal probability is given by exp(-d * value), where d is the Euclidean distance
between the origin and destination patch.

4 dynamic

Examples

these are equivalent
disp <- dispersal(3)
disp <- d(3)

is.dispersal(disp)

dynamic dynamic objects

Description

creates a dynamic object, comprising multiple transition objects to define a dynamical system.
dynamic objects are the core of pop, since they can be created and updated using various methods
(MPMs, IPMs etc.), combined (by addition of two dynamic objects to make another) and and anal-
ysed in various ways (deterministically to obtain demographic parameters, simulated to evaluate
population viability etc.)

Usage

dynamic(...)

is.dynamic(x)

S3 method for class 'dynamic'
plot(x, ...)

states(x)

S3 method for class 'dynamic'
print(x, ...)

S3 method for class 'dynamic'
as.matrix(x, which = c("A", "P", "F", "R"), ...)

S3 method for class 'dynamic'
parameters(x)

S3 replacement method for class 'dynamic'
parameters(x) <- value

Arguments

x a dynamic object to print, plot, convert to a transition matrix, or an object to test
as a dynamic object (for is.dynamic),

dynamic 5

which which type of matrix to build: the overall population growth matrix ('A'), the
probabilistic progression matrix ('P'), the fecundity matrix ('F') or the intrinsic
reproduction matrix ('R')

value a nested named list of parameters within each transition matching those cur-
rently defined for x

... for dynamic(): one or more transition (or other dynamic) objects making up
the dynamic. For plot() and print(): further arguments passed to or from
other methods

Examples

define transitions for a simple three-stage system (with implicit
mortality):
stasis_egg <- tr(egg ~ egg, p(0.4))
stasis_larva <- tr(larva ~ larva, p(0.3))
stasis_adult <- tr(adult ~ adult, p(0.8))
hatching <- tr(larva ~ egg, p(0.5))
fecundity <- tr(egg ~ adult, r(3))
pupation <- tr(adult ~ larva, p(0.2))

combine these into separate dynamics
stasis <- dynamic(stasis_egg,

stasis_larva,
stasis_adult)

growth <- dynamic(hatching,
pupation)

reproduction <- dynamic(fecundity)

combine these into one dynamic (the same as listing all the transitions
separately)
all <- dynamic(stasis, growth, reproduction)

plot these
plot(stasis)
plot(growth)
plot(all)

get component states
states(all)

print method
print(all)

convert to a transition matrix
as.matrix(all)
extract the parameters
(param_stasis <- parameters(stasis))
(param_all <- parameters(all))

update the parameters of these transfuns
param_stasis$stasis_egg$p <- 0.6
parameters(stasis) <- param_stasis

6 landscape

parameters(stasis)

param_all$fecundity$r <- 15
parameters(all) <- param_all
parameters(all)

landscape landscape objects

Description

landscape objects represent sets of patches forming a metapopulation, storing information (such
as area, population and environmental features) that may impact on the dynamic transitions oc-
curring in each component patch. dynamic objects all have a landscape object (by default a
single-patch landscape) as a an attribute which can be accessed and set via the function landscape.
as.landscape is used to create landscape objects, and the functions population, area, distance
and features access and set each of the elements of a landscape.

Usage

landscape(dynamic)

landscape(dynamic) <- value

as.landscape(patches)

is.landscape(x)

S3 method for class 'landscape'
print(x, ...)

area(landscape)

area(landscape) <- value

population(landscape)

population(landscape) <- value

features(landscape)

features(landscape) <- value

distance(landscape)

distance(landscape) <- value

S3 method for class 'landscape'
x[[i]]

landscape 7

Arguments

dynamic an object of class dynamic

value an object of class landscape (for landscape(dynamic) <- value) or the value
to assign to the distance, area, population, or features elements of a landscape
object

patches an object to turn into a landscape object. Currently this can either be a dynamic,
a list or NULL (see details), though more approaches will be added in the future

x an object to print or test as a landscape object

landscape an object of class landscape

i index specifying the patches to include in the subset landscape object

... further arguments passed to or from other methods.

Details

The accessor function landscape either returns or sets the landscape structure of the dynamic,
encoded as a landscape object

patches can be a list containing the following elements: population, a dataframe giving the
number of individuals of each stage (columns) within each patch (rows); area, a one-column
dataframe giving the areas of the patches in square kilometres; coordinates, a dataframe giv-
ing the coordinates of the habitat patches; and features, a dataframe containing miscellaneous
features (columns) of the patches (rows), such as measures of patch quality or environmental
variables. Alternatively, patches = NULL, will set up a ’default’ one-patch landscape with area
= data.frame(area =1), coordinates = data.frame(x = 0, y = 0) and blank population and
features elements. The other option is to pass a dynamic object as patches, in which case the set
up will be the same as for patches = NULL except that population will be a one-row dataframe of
0s, with columns corresponding to the states in the dynamic. This is what’s used when analysing a
dynamic object without user-specified metapopulation structure.

the accessor functions distance, area, population and features either return or set correspond-
ing sub-dataframes of the landscape object

Value

an object of class landscape, essentially a dataframe containing the coordinates, area, population
and features (as columns) for each patch (rows)

Examples

create a default landscape
landscape <- as.landscape(NULL)

create a marginally more interesting one-patch landscape
landscape <- as.landscape(list(coordinates = data.frame(x = c(10, 11),

y = c(11, 12)),
area = data.frame(area = 10),
population = data.frame(adult = 10,

larva = 3,
egg = 20),

8 parameters

features = data.frame(temperature = 10)))
print method
print(landscape)

get and set the area
area(landscape)
area(landscape) <- area(landscape) * 2
area(landscape)

get and set the population
population(landscape)
population(landscape) <- population(landscape) * 2
population(landscape)

get and set the features
features(landscape)
features(landscape) <- cbind(features(landscape), rainfall = 100)
features(landscape)

get and set the distance matrix
distance(landscape)
distance(landscape) <- sqrt(distance(landscape))
distance(landscape)

landscapes can be subsetted to get sub-landscapes of patches with double
braces
landscape
landscape[[1]]
landscape[[1:2]]

parameters get and set parameters

Description

this documents the S3 generic functions parameters to extract or assign parameter values from
objects in the pop package. Methods of this function are defined for various object classes, including
transfun, transition and dynamic objects.

Usage

parameters(x)

parameters(x) <- value

Arguments

x an object from which to extract parameters, or in which to set them

value an object to assign as the parameters of x

pop 9

Details

each class-specific method will return parameters in a slightly different structure, and will require
value to be provided in a different format (though the structures returned and required will gener-
ally be the same for all classes. See the helpfile for each class for the specific details and examples.

pop pop: A Flexible Syntax for Population Dynamic Modelling

Description

Models of population dynamics underpin a range of analyses and applications in ecology and epi-
demiology. The various approaches for fitting and analysing these models (MPMs, IPMs, ODEs,
POMPs, PVA, with and without metapopulation structure) are generally fitted using different soft-
ware, each with a different interface. This makes it difficult to combine various modelling ap-
proaches and data types to solve a given problem. pop aims to provide a flexible and easy to use
common interface for constructing population dynamic models and enabling to them to be fitted
and analysed in various ways.

probability probability transfun

Description

Create a transfun object representing a probability of transition between states. Typically used
inside a call to transition

Usage

probability(value)

p(value)

is.probability(x)

Arguments

value a numeric between 0 and 1 representing a probability

x an object to be tested as a probability transfun object

Details

p() is a shorthand for probability().

10 projection

Examples

these are equivalent
prob <- probability(0.2)
prob <- p(0.2)

is.probability(prob)

projection Deterministic projection

Description

Project a population dynamic model in discrete time, recording the number of individuals in each
state at each time point.

Usage

projection(dynamic, population, timesteps = 1)

is.pop_projection(x)

S3 method for class 'pop_projection'
plot(x, states = NULL, patches = 1, ...)

Arguments

dynamic a population dynamic model of class dynamic

population a dataframe or named vector of positive integers, giving the number of individ-
uals in each state of dynamic. If a dataframe, it should have only one row (as
in the examples below), or as many rows as patches in the metapopulation if a
multi-patch landscape has been defined for dynamic (using landscape). If a
multi-patch landscape has been defined for dynamic, but population has only
one row or is a vector, this population will be duplicated for all patches in the
landscape.

timesteps a positive integer giving the number of time steps (iterations) over which to
simulate the model

x a pop_projection object, or an object to be tested as one

states character vector naming the states in the dynamic object used to run the projec-
tion that should be plotted. By default all of them are plotted.

patches vector of positive integers identifying the patches for which to plot the projec-
tions. By default only projections for the first patch are plotted.

... further arguments passed to or from other methods.

Value

an object of class pop_projection

rate 11

Examples

set up a three-stage model
stasis_egg <- tr(egg ~ egg, p(0.6))
stasis_larva <- tr(larva ~ larva, p(0.4))
stasis_adult <- tr(adult ~ adult, p(0.9))
hatching <- tr(larva ~ egg, p(0.35))
fecundity <- tr(egg ~ adult, r(20))
pupation <- tr(adult ~ larva, p(0.2))

pd <- dynamic(stasis_egg,
stasis_larva,
stasis_adult,
hatching,
pupation,
fecundity)

population <- data.frame(egg = 1200, larva = 250, adult = 50)

simulate for 50 timesteps, 30 times
proj <- projection(dynamic = pd,

population = population,
timesteps = 50)

is.pop_projection(proj)

par(mfrow = c(3, 1))
plot(proj)

rate rate transfun

Description

Create a transfun object representing a rate of transition between states - e.g. an expected number
of offspring generated into one state from another. Typically used inside a call to transition

Usage

rate(value)

r(value)

is.rate(x)

Arguments

value a numeric greater than 0 representing a rate

x an object to be tested as a rate transfun object

12 simulation

Details

r() is a shorthand for rate().

Examples

these are equivalent
rate <- rate(0.2)
rate <- r(0.2)

is.rate(rate)

simulation Stochastic Simulation

Description

Simulate a population dynamic model in discrete time, recording the number of individuals in each
state at each time point.

Usage

simulation(dynamic, population, timesteps = 1, replicates = 1,
ncores = NULL)

is.simulation(x)

S3 method for class 'simulation'
plot(x, states = NULL, patches = 1, ...)

Arguments

dynamic a population dynamic model of class dynamic

population a dataframe or named vector of positive integers, giving the number of individ-
uals in each state of dynamic. If a dataframe, it should have only one row (as
in the examples below), or as many rows as patches in the metapopulation if a
multi-patch landscape has been defined for dynamic (using landscape). If a
multi-patch landscape has been defined for dynamic, but population has only
one row or is a vector, this population will be duplicated for all patches in the
landscape.

timesteps a positive integer giving the number of time steps (iterations) over which to
simulate the model

replicates a positive integer giving the number of independent time series to simulate

ncores an optional positive integer giving the number of cpu cores to use when running
simulations. By default (when ncores = NULL) all cores are used (or as many as
parallel::detectCores can find). This argument is ignored is replicates =
1

simulation 13

x a simulation object, or an object to be tested as a simulation

states a character vector naming the states in the dynamic object used to run the simu-
lation that should be plotted. By default all of them are.

patches vector of positive integers identifying the patches for which to plot the simula-
tions. By default only projections for the first patch are plotted.

... further arguments passed to or from other methods.

Details

The order of the dynamics in the simulation is defined by the order in which the transitions were
passed to dynamic. I.e. if the stasis probability of a life stage (e.g. fraction surviving and remaining
in the stage) was specified before the reproduction rate, then only those staying in the state will
reproduce. Conversely, if reproduction was given first, individuals will reproduce before the stasis
probability is applied.

Value

an object of class simulation

Examples

set up a three-stage model
stasis_egg <- tr(egg ~ egg, p(0.6))
stasis_larva <- tr(larva ~ larva, p(0.4))
stasis_adult <- tr(adult ~ adult, p(0.9))
hatching <- tr(larva ~ egg, p(0.35))
fecundity <- tr(egg ~ adult, r(20))
pupation <- tr(adult ~ larva, p(0.2))

pd <- dynamic(stasis_egg,
stasis_larva,
stasis_adult,
hatching,
pupation,
fecundity)

population <- data.frame(egg = 1200, larva = 250, adult = 50)

simulate for 50 timesteps, 30 times
sim <- simulation(dynamic = pd,

population = population,
timesteps = 50,
replicates = 30,
ncores = 1)

is.simulation(sim)
par(mfrow = c(3, 1))
plot(sim)

14 transfun

transfun transfun objects

Description

utility functions for the transfun class. transfun objects are created by functions such as probability.

Usage

is.transfun(x)

S3 method for class 'transfun'
print(x, ...)

S3 method for class 'transfun'
x * y

S3 method for class 'transfun'
parameters(x)

S3 replacement method for class 'transfun'
parameters(x) <- value

Arguments

x a transfun object to print or an object to test as a transfun object

y a transfun object to be multiplied with another with the same pathway

value a named list of parameters matching those currently defined for x

... further arguments passed to or from other methods.

Details

multiplication of transfun objects with the same pathway results in a compound transfun object (also
of class transfun). When used in a stochastic model, the two stochastic transitions are evaluated
one after another. When analysed deterministically, the expectation of the compound transition
function is taken as the product of the expectations of the two basis transfuns.

Examples

prob <- p(0.3)
is.transfun(prob)

prob
(compound <- prob * r(4.3))

extract the transfun parameters
(param_prob <- parameters(prob))

transition 15

(param_compound <- parameters(compound))

update the parameters of these transfuns
param_prob$p <- 0.6
parameters(prob) <- param_prob
parameters(prob)

param_compound$r <- 15
parameters(compound) <- param_compound
parameters(compound)

transition transition objects

Description

creates a transition object, encoding a transition between two states. E.g. the probability of a
seed germinating, or of an individual surviving in each time step

Usage

transition(formula, transfun)

tr(formula, transfun)

is.transition(x)

S3 method for class 'transition'
print(x, ...)

S3 method for class 'transition'
x * y

S3 method for class 'transition'
parameters(x)

S3 replacement method for class 'transition'
parameters(x) <- value

Arguments

formula a two-sided formula identifying the states between which the transition occurs

transfun a transfun object quantifying the transition.

x an object to print or test as a transition object

y a transition object to be multiplied with another with the same pathway

value a named list of parameters matching those currently defined for x

... further arguments passed to or from other methods.

16 transition

Details

tr is just a shorthand for transition

multiplication of transition objects with the same pathway results in a transition object whose
transfun object is a compound of the two transfuns in the transitions. See transfun for more
details of compound transfuns.

Examples

50/50 chance of a larva emerging from an egg
hatching <- tr(larva ~ egg, p(0.5))

three eggs laid per adult per time step
fecundity <- tr(egg ~ adult, r(3))

0.1 probability of a larva pupating into an adult
pupa <- tr(adult ~ larva, p(0.1))

print method
print(pupa)

make a compound transition to include a probability of laying eggs
prob_laying <- tr(egg ~ adult, p(0.6))
(recruitment <- prob_laying * fecundity)

extract the transfun parameters
(param_pupa <- parameters(pupa))
(param_recruitment <- parameters(recruitment))

update the parameters of these transfuns
param_pupa$p <- 0.6
parameters(pupa) <- param_pupa
parameters(pupa)

param_recruitment$r <- 15
parameters(recruitment) <- param_recruitment
parameters(recruitment)

Index

*.transfun (transfun), 14
*.transition (transition), 15
[[.landscape (landscape), 6

area (landscape), 6
area<- (landscape), 6
as.landscape (landscape), 6
as.matrix.dynamic (dynamic), 4
as.transfun, 2

d (dispersal), 3
dispersal, 3
distance (landscape), 6
distance<- (landscape), 6
dynamic, 4, 10, 12

features (landscape), 6
features<- (landscape), 6

is.dispersal (dispersal), 3
is.dynamic (dynamic), 4
is.landscape (landscape), 6
is.pop_projection (projection), 10
is.probability (probability), 9
is.rate (rate), 11
is.simulation (simulation), 12
is.transfun (transfun), 14
is.transition (transition), 15

landscape, 2, 6, 7, 10, 12
landscape<- (landscape), 6

p (probability), 9
parameters, 8
parameters.dynamic (dynamic), 4
parameters.transfun (transfun), 14
parameters.transition (transition), 15
parameters<- (parameters), 8
parameters<-.dynamic (dynamic), 4
parameters<-.transfun (transfun), 14
parameters<-.transition (transition), 15

plot.dynamic (dynamic), 4
plot.pop_projection (projection), 10
plot.simulation (simulation), 12
pop, 9
pop-package (pop), 9
population (landscape), 6
population<- (landscape), 6
print.dynamic (dynamic), 4
print.landscape (landscape), 6
print.transfun (transfun), 14
print.transition (transition), 15
probability, 9, 14
projection, 10

r (rate), 11
rate, 11

simulation, 12
states (dynamic), 4

tr (transition), 15
transfun, 14, 15, 16
transition, 3, 9, 11, 15

17

	as.transfun
	dispersal
	dynamic
	landscape
	parameters
	pop
	probability
	projection
	rate
	simulation
	transfun
	transition
	Index

